Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

Heike Olbrich,1,13 Miriam Schmidts,2,13 Claudius Werner,1,13 Alexandros Onoufriadis,2,13 Niki T. Loges,1 Johanna Raidt,1 Nora Fanni Banki,3 Amelia Shoemark,4 Tom Burgoyne,4 Saeed Al Turki,5 Matthew E. Hurles,5 UK10K Consortium,6 Gabriele Köhler,7 Josef Schroeder,8 Gudrun Nürnberg,9 Peter Nürnberg,9 Eddie M.K. Chung,10 Richard Reinhardt,11 June K. Marthin,12 Kim G. Nielsen,12 Hannah M. Mitchison,2,14,* and Heymut Omran1,14,*

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307*), in six individuals from three Faroe Island PCD-affected families that carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas species. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently not dependent on the function of the CP apparatus.

Introduction

Early in the evolution of the eukaryotic cell, cilia and flagella appeared as cell-surface appendages that enable protozoa and sperm to propel through fluid.1 They are highly conserved organelles with both motile and sensory functions; almost all motile cilia have the same 200 nm diameter and ultrastructural plan.2 The core axonemal structure of most motile cilia is based on microtubules—a central pair (CP) of microtubules is surrounded by nine peripheral microtubule doublets that, together with connecting radial spokes, act as a stabilizing framework. This framework runs along the cilium length and is attached at regular intervals to a number of other macromolecules, including the dynein arms and nexin links, also influencing ciliary motility and waveform.2,3

Primary ciliary dyskinesia (PCD [MIM 242650]) is a rare genetic disorder that is usually inherited as an autosomal-recessive trait and affects approximately 1 in 20,000 individuals. In PCD, defective mucociliary clearance, secondary to immotile or dyskinetic respiratory cilia, results in chronic infection and inflammation of the upper and lower airways. This often progresses to bronchiectasis.3 Dysfunctional sperm tails (flagella) frequently cause male infertility. Other congenital disorders, such as hydrocephalus, retinal degeneration, sensory hearing deficits, polycystic kidney disease, and intellectual disability, have also been observed in distinct PCD variants.3

Associated with most known PCD gene mutations, randomization of left-right asymmetry is a phenotype that was shown in mouse models to result from defective function of motile monocilia at the embryonic node.4 Thus, ~50% of affected PCD individuals exhibit situs

1Department of General Pediatrics, University Children’s Hospital Muenster, 48149 Muenster, Germany; 2Molecular Medicine Unit, University College London Institute of Child Health, London WC1N 1EH, UK; 3Department of Pediatrics, Semmelweis University, 1085 Budapest, Hungary; 4Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield National Health Service Trust, London, UK; 5The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambridge, UK; 6Consortium members are listed in the Supplemental Data; 7Department of Pathology, University Hospital Muenster, 48149 Muenster, Germany; 8Department of Pathology, University Regensburg, 93053 Regensburg, Germany; 9Cologne Center for Genomics and Center for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany; 10General and Adolescent Paediatric Unit, University College London Institute of Child Health, London WC1E 6JJ, UK; 11Genome Centre Cologne at the Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; 12Pediatric Pulmonary Service and Cystic Fibrosis Centre, Copenhagen University Hospital, 2100 Copenhagen, Denmark

13These authors contributed equally to this work
14These authors jointly supervised this work
*Correspondence: heymut.omran@ukmuenster.de (H.O.), h.mitchison@ucl.ac.uk (H.M.M.)
http://dx.doi.org/10.1016/j.ajhg.2012.08.016 ©2012 by The American Society of Human Genetics. All rights reserved.
inversus, or more rarely, situs ambiguous associated with complex congenital heart disease. In contrast, a distinct minority of PCD cases are caused by observable defects of CP structures that are considered to be irrelevant for embryonic nodal cilia movement. These PCD variants are not associated with situs anomalies. In these cases, the cilia beat in a circular manner akin to that of nodal cilia. A proportion of CP defects are caused by mutations in the radial spoke head genes RSPH4A (MIM 612649) and RSPH9 (MIM 612650); these mutations cause an intermittent loss of the CP microtubules.

Genetic defects in 12 additional genes have been identified in persons with nonsyndromic PCD. Genetic studies have identified autosomal-recessive mutations in DNAH5 (MIM 603335), DNAI1 (MIM 604366), DNAI2 (MIM 605483), DNAI1 (MIM 610062), TXNDC3 (MIM 607421), DNAH11 (MIM 603339), DNAF1 (KU [MIM 612517]), DNAF2 (LRRC50 [MIM 613190]), DNAF3 (MIM 614566), CCDC39 (MIM 613799), and CCDC40 (MIM 613799), and CCDC103. The first six of these genes encode subunits of axonemal outer-dynein-arm (ODA) components. DNAF1, DNAF2, and DNAF3 encode proteins displaying functions in the cytoplasmic preassembly of dynein-arm components. CCDC39 and CCDC40 mutations cause defects of the nexin links and inner-dynein-arm (IDA) components. CCDC103 encodes a protein that uniquely has dual localization both in the cytoplasm and in the axoneme, where it functions as a dynein-arm component involved in docking of the arms to ciliary microtubules. Two X-linked PCD variants associated with extra features suggestive of deficient sensory cilia function are accounted for by mutations in OFD1 (MIM 311200) and RPGR (MIM 312610). Recent molecular findings suggest that routine transmission electron microscopy (TEM), the conventional diagnostic gold standard, can miss certain PCD variants. Therefore, a combined approach of high-speed videomicroscopy (HVM) for analyzing ciliary beat patterns and subsequent confirmatory diagnostics such as TEM, immunofluorescence microscopy, or genetics should be the current standard diagnostic protocol according to the European Respiratory Society (ERS) recommendation.

Here, we report on a PCD variant characterized by the absence of situs inversus in affected individuals and a subtle respiratory cilia beating defect of reduced amplitude creating a stiff beat pattern, which is caused by a deficiency of the CP-apparatus-associated protein HYDIN (MIM 610812).

Material and Methods

Affected Persons and Families

We studied DNA from a German consanguineous kindred and eight Faroe Island PCD individuals. Signed and informed consent was obtained from PCD-affected individuals and their family members according to protocols approved by the institutional ethics review boards.

Haplotype Analysis and Genome-wide SNP Mapping

We genotyped DNA samples from three affected persons and their parents (third-degree consanguineous parents) from the multiplex German family, OP-305, by using the Affymetrix GeneChip Human Mapping 10K Array v.2.0. Relationship errors were evaluated with the help of the program Graphical Relationship Representation. The program pedCheck was applied for detecting Mendelian errors. Non-Mendelian errors were identified with the program MERLIN. Linkage analysis was performed under the assumption of autosomal-recessive inheritance, full penetrance, and a disease gene frequency of 0.0001. Multipoint LOD scores were calculated with the program ALLEGRO and presented graphically with HaploPainter. All data handling was performed with the graphical user interface ALOHOMORA. SNP genotyping for the Faroe Island families was performed with the Illumina Linkage IV Panel of 6,008 SNPs with haplotypes constructed with GeneHunter v.2.1rs from the easyLINKAGE Plus v.5.08 package as previously described.

Whole-Exome Sequence Analysis

Exome sequencing of genomic DNA from two affected siblings from one Faroe Island family, UCLI09, was performed at the Wellcome Trust Sanger Institute (Cambridge, UK) as part of the UK10K project. DNA (1–3 μg) was sheared to 100–400 bp with a Covaris E210 or LE220 (Covaris, Woburn, MA, USA). Sheared DNA was subjected to Illumina paired-end DNA library preparation and enriched for target sequences (Human All Exon 50 Mb, ELID S02972011, Agilent Technologies). Enriched libraries were sequenced with the HiSeq platform (Illumina) as paired-end 76 bp reads according to the manufacturer’s protocol. Sequencing reads that passed quality filtering were mapped to the reference genome sequence (hg19) with the Burrows-Wheeler Aligner 0.5.8c. GATK 1.1.5 was used for recalibrating base quality scores, realigning around indels, and marking duplicate reads. Variants were called independently on the resulting reads with both SAMtools mpileup (SAMtools 0.1.13) and GATK UnifiedGenotyper, and the call sets were merged. Filtering of the variants for novelty was performed by comparison to 181 UK10K exomes and by the exclusion of those with a frequency > 0.005 in the 1000 Genomes database. Variants not shared by both affected members of the pedigree and not consistent with recessive inheritance were excluded from the downstream analysis, which is detailed in Table S1, available online.

Mutational Analysis by Sanger Sequencing

Genomic DNA was isolated by standard methods. For analysis of family OP-305, amplification of 86 genomic fragments comprising all 86 exons of HYDIN (RefSeq accession number NM_001270974.1) was performed. Initially, for the detection of the Faroe Island sequence variant c.922A>T, DNA spanning HYDIN exon 8 from PCD-affected individuals and their family members was amplified with primers HYDINFor and HYDINRev. Subsequent allele-specific PCRs were performed with chromosome 1 HYDIN2-specific primers Ch1HYD2F and Ch1HYD2R and chromosome 16 HYDIN-specific primers Ch16HYDF and Ch16HYDR; we manually designed these primers by aligning the HYDIN and HYDIN2 genomic DNAs in BLAST to have them differ by only a single base pair at their 3’ ends. PCR conditions are available upon request. All amplified PCR products were sequenced bidirectionally. Primer sequences are presented in Figure S5 and Table S3.
cDNA Analysis of the Detected Splicing and Nonsense Mutation
RT-PCR was employed for determining the effect of the detected mutant variants on transcripts. We isolated RNA from respiratory epithelial cells obtained by nasal-brushing biopsies from individual OP-305 II1 and RNA from Epstein-Barr-virus-transformed lymphocytes from individual UCL109 II4 (OP-759) and controls. First-strand cDNA synthesis was performed with the RevertAid H minus First Strand cDNA Synthesis Kit (Fermentas) for OP-305 II1 and with the Transcripter High Fidelity cDNA Synthesis Kit (Roche) for UCL109 II4. HYDIN cDNA was amplified with primers based on the Ensembl sequence (ENST00000393567) for HYDIN. Our cDNA experiments verified the predicted splice sites of the exon 25/exon 26 borders annotated by Ensembl (GenBank accession number JX501991). Further details and the locations of primers are presented in Figures S1A and S1B and Table S4.

Measurement of Nasal Nitric Oxide
Measurements of nasal nitric oxide (nNO) were obtained from family OP-305 with the use of an EcoMedics CLD88 chemiluminescence nitric oxide (NO) analyzer (Duertten, Switzerland); the aspiration sampling rate was 330 ml/min as recommended by the manufacturer. In Faroe Island individuals with PCD, nNO measurements were performed with Nitric Oxide Monitoring System (Aerocrine, Sweden) equipment as described with a flow sampling rate of 300 ml/min. An exhalation-against-resistance maneuver was performed while nNO was measured as per American Thoracic Society and European Respiratory Society guidelines. Measurements were recorded in parts per billion (ppb) and converted to nNO production rate in nl/min with the following equation: nNO (nl/min) = NO (ppb) × sampling rate (ml/min).

TEM
The samples of nasal mucosa were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer at 4°C, washed overnight, and postfixed in 1% osmium tetroxide. After dehydration, the samples were embedded in a mixture of propylene oxide and epoxy resin. After polymerization, several resin sections were cut. The sections were stained with aqueous 1% uranyl acetate and Reynolds lead citrate. TEM was performed with a Philips CM10, Zeiss LEO912AB (zero-loss mode) EFTEM, or MORGAGNI 268 (Philips).

Electron Microscopy Tomography
Sections 150 nm thick were cut with a Reichert Ultracut-E ultramicrotome and mounted onto copper grids. A 10 nm gold-particle solution was applied before staining with 2% methanolic uranyl acetate and Reynolds’s lead citrate. TEM was performed with a Philips CM10, Zeiss LEO912AB (zero-loss mode) EFTEM, or MORGAGNI 268 (Philips).

High-Speed Video Microscopy Analysis for Ciliary Beat Assessment
In the German samples, ciliary beat and sperm-tail function were assessed with the SAVA system. Respiratory epithelial cells and sperm cells were viewed with an Olympus IMT-2 microscope equipped with a Redlake ES-310Turbo monochrome high-speed video camera (Redlake, San Diego, CA) set at 125 or 250 frames per second. The nasal epithelial cells from the Faroe individuals were viewed with a Leica DMLB microscope equipped with a Mikrotron MC1302 camera set at 200 frames per second.

Immunofluorescence Analysis
Respiratory epithelial cells were obtained by nasal-brush biopsy and suspended in cell-culture medium. Samples were spread onto glass slides, air dried, and stored at –80°C until use. For immunofluorescence analyses, monoclonal DNAH5 and GAS11 antibodies, as well as polyclonal DNAH11 and CCDC39 antibodies, were used as described previously.

Results
Clinical Findings in Affected Siblings of German and Faroe Island Families
Different approaches were taken in this study for the identification of causative mutations in PCD-affected families from Germany and the Faroe Islands. All affected individuals have normal situs composition (situs solitus). None of the affected individuals exhibit congenital heart disease or hydrocephalus.

The parents (OP-305 I1 and OP-305 I2) of the German consanguineous PCD-affected family, OP-305, are third-degree cousins (Figure 1A). The index person, OP-305 II1, is a 41-year-old affected female. After birth, she was hospitalized for several days because of a neonatal respiratory-distress syndrome. Since early infancy, she has suffered from chronic wet cough, recurrent bronchitis, and pneumonia. Upper-airway disease included recurrent otitis media and chronic rhinosinusitis with nasal polyps requiring repeated sinusal surgery. Computed tomography of the lungs demonstrated marked bronchiectatic lung disease (Figure 1B). OP-305 II2 and OP-305 II3 are 38 and 34 years old, respectively, and are male affected brothers. Similarly to their sister OP-305 II1, both have suffered from neonatal respiratory distress syndrome, recurrent productive bronchitis, and pneumonia since early childhood, as well as chronic rhinosinusitis. Sinonasal surgery was performed because of marked nasal polyposis. In both persons, computed tomography showed bronchiectasis of the middle lobe. Neither brother has children.

The three Faroe Island families (UCL96, UCL109, and UCL139; Figure 3B) are not immediately consanguineous; however, they originate from a historically isolated population, and an ancestral relationship between the paternal grandparent of UCL109 and the maternal grandparent of UCL96 was verbally reported by the families. In parallel, UCL109 family members were studied in Germany. Individuals were referred to as OP-921 (UCL109 II1), OP-836 (UCL109 II3), and OP-759 (UCL109 II4). Family UCL96 has two affected siblings (aged 30 and 24 years) who were first diagnosed at the age of 5 years (UCL96 II1) and
UCL109 II4 is the only affected person who did not present with neonatal respiratory-distress syndrome. However, subsequent symptoms are typical for PCD and include chronic nasal discharge since early infancy, chronic bronchitis, chronic rhinosinusitis, and chronic otitis leading to grommets insertion. UCL139 II1, the only affected member of family UCL139, is a 25-year-old person diagnosed at the age of 8 years. Measurement of nNO in OP-305 II1 revealed a mean nNO concentration of 130 ppb, corresponding to a nNO production rate of 36.6 nl/min. Measurements were also taken in all six affected individuals from the Faroe Islands and showed a similar reduction; they ranged from 13 to 72 ppb, corresponding to a nNO production rate of 3.9–21.6 nl/min. These values are all significantly lower than current nNO cutoff values (58 nl/min).

Identification of a PCD Locus on Chromosome 16

A total genome linkage scan using SNPs in the consanguineous German kindred OP-305 detected only a single chromosome 16q region with a significant LOD score >3.5 (Figures 1A and 1C). Simulation studies showed a maximum LOD score of 3.6, which is the maximum LOD score that can be expected in this family. A 21.8 Mb region of homozygosity shared between the three affected offspring was identified in chromosomal region

0.5 years (UCL96 II2). Both siblings had respiratory-distress syndrome as neonates and developed chronic wet cough, chronic bronchitis, and chronic rhinosinusitis and underwent tympanostomy-tube placement because of recurrent otitis media. Computed tomography showed bronchiectasis most prominent in the right middle lobe and the lingula. Family UCL109 has three affected siblings aged 22 (diagnosed at 6 years old), 19 (diagnosed at 3 years old) and 10 (diagnosed at 9 months old). In affected individual UCL109 II1, computed tomography demonstrated bronchiectatic lung disease of the right middle lobe. In affected siblings UCL109 II3 and UCL109 II4, chest X-rays showed chronic abnormalities of the right middle lobes. Individual
The HYDIN c.3985G>T Splicing Mutation Causes Aberrant Splicing

We performed RT-PCR analysis on individual OP-305 II1 and control respiratory epithelial cells. A cDNA fragment comprising exons 25–28 was amplified in two rounds of amplifications with a first-strand primer spanning the junction between exons 29 and 30 (see Figure S1A). The first round of PCR amplification was carried out with a HYDIN-specific forward primer located in the nonduplicated area (exon 5). We identified in the control samples only normal transcripts. We found in the affected person predominantly abnormal transcripts, which is consistent with malfunction of the HYDIN exon 27 splice acceptor site (c.3985G>T). The abnormal HYDIN transcript contained the c.3985G>T substitution and had a 47 bp insertion between exon 26 and exon 27 apparently as a result of the use of a cryptic splice acceptor site located within IVS26 (Figure 2C). The insertion leads to a frameshift and premature stop codon after the insertion of 62 novel amino acids (r.[3985-47_3985+1ins; 3985G>T]). Consistent with a homozygous loss-of-function mutation present in OP-305 II1, we did not identify any normal HYDIN transcripts in this material. The background sequence notable in OP-305 II1 (Figure 2C) results from amplification of HYDIN2 transcripts with normal splicing and of the wild-type c.3985G sequence.

Whole-Exome Sequencing Identifies Recessive HYDIN Mutations

In parallel, next-generation whole-exome sequence analysis identified recessive HYDIN mutations in six Faroe PCD-affected persons. We performed whole-exome analysis on two affected siblings from PCD-affected family UCL109, which is a pedigree from a previously studied cohort of eight families originating from the Faroe Islands (Figure 3B).52 Sequence results were equivalent between the two samples (6.6 Gb of total bases generated per sample). More than 98% of the sequence reads were mapped with high mapping accuracy in both individuals (Table S2). A filtering process for assessing variants for novelty identified 17 homozygous and 328 heterozygous variations shared between the affected individuals (Table S1). Analysis of the 328 heterozygous variants showed that only one gene, ZNF295, had biallelic nonsynonymous variants, indicating inheritance of compound-heterozygous changes consistent with recessive inheritance. However, ZNF295 is not present in the cilia proteome and has no known ciliary functions.50 Of the 17 homozygous shared variants, we prioritized those in exonic regions and splice sites. Only two genes had stop-gain mutations, splice-site mutations, or nonsynonymous changes; these were DPYSL2 (MIM 602463), which is not present in the cilia proteome and has no known ciliary functions, and HYDIN.

Thus, whole-exome filtering identified HYDIN variants shared between both affected individuals: a homozygous A-to-T substitution at hg19 genomic position 71,171,175
Figure 2. Identification of Recessive HYDIN Mutations in OP-305 and Verification that the c.3985G>T Splicing Mutation Causes Aberrant Splicing

(A) The ancestral duplication of the HYDIN locus from 16q22.2 to HYDIN2 (1q21.1) includes major parts of HYDIN (exons 6–83). The borders of the duplicated region are indicated by the dotted lines, and the gray box defines the paralogous genomic regions between the two loci HYDIN and HYDIN2. Because the duplication occurred very recently during human evolution, even intronic sequences are still conserved between HYDIN and HYDIN2. Thus, by PCR amplification of exon 27, four alleles are amplified, two alleles originate from HYDIN (chromosome 16), and two alleles originate from HYDIN2 (chromosome 1).

(B) Sequence chromatographs of exon 27 amplicons depict relative levels of the G>T DNA variant (c.3985G>T) in individuals from OP-305 at the first position of the conserved splice acceptor site of exon 27. Segregation analysis confirmed that this DNA variant, like SNP markers of the HYDIN locus (Figure 1), cosegregates with disease status. In contrast, SNP markers of the HYDIN2 locus do not show linkage (Figure 1). Thus, the segregation analysis indicates that the detected splicing mutation is located in HYDIN and not in the paralogous HYDIN2.

(C) To provide further evidence that the splicing variant is located within HYDIN, we performed HYDIN-specific RT-PCR analysis on individual OP-305 II1 and control respiratory epithelial cells (Figure S1 and Table S4). Identified in the sample from OP-305 II1 were exclusively abnormal transcripts resulting from malfunction of the HYDIN exon 27 splice acceptor site. The transcripts (upper panel) show a T nucleotide at c.3985 (arrow) at the first base of exon 27, and contained between the exon 26 and exon 27 boundary is an aberrant 47 bp insertion comprising the 3’ most end of IVS26. A control cDNA sequence (middle panel) is shown for comparison with the homozygous reference G nucleotide at c.3985 and normal exon 26/exon 27 splicing. The reference genomic sequence is shown in the bottom panel. The aberrant insertion can be explained by utilization of an upstream cryptic IVS26 splice acceptor (boxed) compared to the normal exon 27 splice acceptor (bold).
corresponding to c.922A>T in exon 8 of HYDIN. This is predicted to create nonsense alteration p.Lys307* (Figures 3A and 3C and Figure S5). There was high sequence coverage with a read depth of 129 across this variant; however, a low sequence quality score was recorded. From the total of 129 reads, only nine reads could be mapped unambiguously to HYDIN on chromosome 16. The nine mapped reads all carried the aberrant T nucleotide resulting in a homozygous annotation of this change because of the 120 reads that could not be unambiguously mapped, nearly 50% carried the T variant and the rest carried an A. This suggests that only reads from chromosome 16 HYDIN were fully 100% aligned, and none of the reads were generated from the chromosome 1 HYDIN2 homolog. This recording of the nucleotide as a homozygous T in both persons is a useful finding in the whole-exome data in view of the difficulty of distinguishing the duplicated HYDIN from HYDIN2 by Sanger sequencing. The low depth of 9 resulted in a very low quality score, and this variant could have been missed if more stringent quality filtering had been applied. The c.922A>T variant is not found in dbSNP or in exomes sequenced in the 1000 Genomes Project and National Heart, Lung, and Blood Institute (NHLBI) Grand Opportunity (GO) Exome Sequencing Project. Segregation analysis of c.922A>T was performed with Sanger sequencing. Primers designed to amplify the exon 8 (chromosome 16) HYDIN sequence showed a similar result in chromatograms to that of the German OP-305 sample testing.

Figure 3. Identification of a Common HYDIN Mutation, c. 922A>T, in Faroe Island Families

(A) Sequence chromatographs of HYDIN exon 8 amplicons were generated with chromosome 16 HYDIN-specific primers (amplification-refractory mutation system [ARMS] method) and demonstrate homozygous A>T mutations (c.922A>T) predicted to create a homozygous AAA to TAA codon change, p.Lys307* (red arrow; amino acids are indicated below nucleotide sequence). Affected child UCL109 II3 (upper panel), homozygous for p.Lys307*, and his father I1, a heterozygous carrier (middle), are compared to a control (bottom panel). (B) Segregation-analysis genotypes confirmed that this nonsense variant cosegregates with disease status, which is inherited homozygously in all six affected children (T/T, black symbols), whereas all the parents and five unaffected siblings (white symbols) are carriers (T/A) or normal (A/A). Disease-associated haplotype reconstruction for the linkage region on chromosome 16 shows the flanking markers rs973200 and rs328384 spanning a 6.5 cm (8.8 Mb) region presumed to be a shared ancestral Faroe Island founder haplotype (large box). The location of HYDIN is indicated in the small box because marker rs235987 is intragenic. (C) RT-PCR analysis of individual UCL109 II4 and control samples verified that the c.922A>T nonsense variant is contained within HYDIN on chromosome 16. All transcripts from the affected person (upper panel) showed the homozygous nonsense mutation (c.919A>T [p.Lys307*]; red arrow); the HYDIN transcripts from a healthy control are shown in the lower sequence.

Please cite this article in press as: Olbrich et al., Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry, The American Journal of Human Genetics (2012), http://dx.doi.org/10.1016/j.ajhg.2012.08.016
have an unambiguous homozygous c.922A>T-specific sequence data from family UCL109 for the chromosome-8-matched 3’-specific for- amplification refractory mutation system (ARMS) testing, whereby oligonucleotide primers with a single mismatched 3’ residue will not function as primers in PCR under sufficiently stringent conditions. Representative sequence data from family UCL109 for the chromosome-16-specific HYDIN amplicon show that affected children have an unambiguous homozygous c.922A>T change, whereas unaffected family members have heterozygous changes (Figure 3A). The mutation segregated in all three pedigrees in accordance with recessive disease (Figure 3B).

Analysis of the available SNP haplotypes across the HYDIN locus was entirely consistent with this mutation inheritance given that an 8.8 Mb ancestral haplotype was found to be shared between the affected individuals from these three families, consistent with the reported ancestral relationship between UCL109 and UCL96 (Figure 3B).

To confirm that the detected mutation is indeed located within HYDIN and not within HYDIN2 on chromosome 1, we performed nested cDNA amplification with HYDIN-specific forward primers in exons 4 and 5, which are not duplicated (Figure S1B). The control samples showed normal se- quences, whereas the sequence of affected individual UCL109 II4 demonstrated a homozygous A>T exchange creating a stop codon (Figure 3C).

TEM and Electron Microscopy Tomography Show that HYDIN-Mutant Cilia Have a Subtle CP Defect
To characterize the sequelae of HYDIN mutations in the three affected siblings (OP-305 II1, OP-305 II2, and OP-305 II3), we examined TEM of respiratory cilia. Visualization of cilia cross-sections showed identical findings in all three affected individuals. Most cilia exhibited a normal 9+2 axonemal composition, characterized by nine outer microtubule doublets surrounding two single central microtubules (Figures 4A and 4B). ODAs and IDAs showed no alterations. Visualization of the CP-apparatus projections did not reveal any obvious abnormalities. 9+0 cilia (not shown) and 8+1 cilia (ciliary transposition defect where the CP is absent and replaced by one of the peripheral microtubules) were only rarely observed (Figure 4C). Thus, most cross-sections appeared entirely normal.

In addition, TEM was performed in four (UCL109 II1,
UCL109 II3, UCL109 II4, and UCL139 II1) of the six Faroe PCD-affected persons. Here, we found similar findings (Figure S4). Interestingly, in the three affected members of the UCL109 family, no ciliary transposition defects (8+1 cilia) were detected. Notably, a few 9+3 cilia (additional central microtubules) were only identified in UCL109 III1 (Figure S4). However, overall, routine TEM findings were nonspecific and not sufficient for diagnosis of PCD.

These findings are consistent with our results by immunofluorescence microscopy. Using antibodies directed against ODA DNASH heavy chain, IDA DNALI1 light chain (Figure S2), and dynein regulatory complex (DRC) components GAS11 and CCDC39 (Figure S3), we found no evidence for alterations in the structure or composition of the ODA, IDA, and DRC complexes.

Because the projections of the CP apparatus cannot be visualized accurately by TEM, we performed image averages that aid visualizing the CP appendages (Figure 4G). To affirm these findings, we utilized electron microscopy tomography, which has a much higher resolution (Figure 4H). Electron microscopy tomography clearly showed that in HYDIN mutant respiratory cilia of OP-305 II1, the projection C2b is absent at the CP apparatus (Figure 4H). Movies S1 and S2 contain the original electron-microscopy images used for calculating the rendered images of the CP apparatus (Figures 4H and 4K).

HYDIN Mutant Respiratory Cilia and Sperm Flagella Exhibit Abnormal Axonemal Bending

To understand the effect of HYDIN mutations at the functional level, we performed high-speed videomicroscopic evaluation of respiratory cilia beating and sperm-tail motility. We were able to perform nasal-brushing biopsy in all affected siblings of family OP-305 and in individuals UCL139 II1 and UCL109 II1 to visualize respiratory-cilia function. In all affected individuals, we recognized identical abnormalities of the beating pattern (Movies S3, S4, S5, S6, S7, S8, S9, S10, S11, and S12 and Figure 5A). Respiratory cilia lacked coordinated beating activity, and the fact that individual cilia exhibited a reduced bending capacity along the ciliary axoneme resulted in reduced beating amplitudes. In comparison to control cilia, they appeared to be more rigid. As a consequence, mutant cilia did not generate distinct effective or recovery strokes and had a reduced capacity to transport mucus or particles (Movies S3, S4, S5, S6, S7, S8, S9, S10, S11, and S12). The ciliary beat frequency was normal (4–7 Hz at room temperature) in most of the areas analyzed. However, immotile cilia were also found in a few regions (Movies S3 and S4). Consistent with the occasional defects of ciliary transposition (indicated by 9+0 and 8+1 axonemes) present in some cross-sections documented by electron microscopy, some ciliary bundles also showed rotatory movement (Movies S5 and S6).

In adult male OP-305 II2, ejaculate was available for high-speed videomicroscopic sperm analysis (Movies S11 and S12). Sperm motility was markedly decreased—69% of sperms were completely immotile, and 23% of sperms exhibited only some residual motility. Only 8% of sperms showed some degree of progressive motility. Analysis of these sperm tails revealed an aberrant flagellar beating pattern with a markedly reduced bending capacity, especially of the proximal part of the flagellum (Figure 5B). Like respiratory cilia, the HYDIN mutant sperm tails appeared rigid.

Discussion

We were very fortunate to study a large consanguineous PCD-affected family, enabling the identification of a single gene locus for PCD on chromosome 16q, which includes HYDIN (Figure 1), and we found homozygous HYDIN mutations in all those affected. For our mutation-detection strategy, we took into account that PCR amplification of HYDIN genomic fragments comprising exons 6–83 results in amplification of four alleles (two of HYDIN and two of HYDIN2). Thus, we actively searched for DNA sequence reads with equal strong peaks for wild-type and variant alleles in all three affected individuals. With this rather unusual strategy, we indeed identified recessive homozygous HYDIN mutations in the OP-305 family (Figure 2) and consistent data in Faroe Island families (Figure S5).
However, using this approach for the identification of individuals with compound-heterozygous mutations in HYDIN will be very challenging because detection of one mutant allele on the background of three wild-type alleles could easily be overlooked (see also Figure 2 and Figure S5 sequence reads of the parents). The newer high-throughput DNA sequencing technologies applied in the Faroe Island cohort proved here to be more suitable for identifying HYDIN mutations because they produce allele-specific sequence reads. Despite the successful use of whole-exome sequencing in this case, determining whether the identified sequence variants represent HYDIN or HYDIN2 variants will still remain a major challenge in genetic testing, and cDNA expression analyses will be very important as a confirmatory test. Here, we could clearly demonstrate that the c.3985G>T HYDIN mutations affecting the evolutionarily conserved splice acceptor site of exon 27 cause aberrant cDNA processing and HYDIN transcripts with predicted premature stop of translation (Figure 2). A historical PCD locus (CILDS) on chromosome 16 was previously described in a cohort of Faroe Island families comprising all of the known PCD cases on these isolated islands located in the North sea and governed by Denmark. Whole-exome sequencing was used in this cohort for identifying a second variant, c.922A>T in HYDIN, predicted to lead to premature termination of the protein product (p.Lys307*). This mutation accounted for all six individuals in three out of the total eight families, confirming at the molecular level the genetic heterogeneity within this population.

To understand the molecular HYDIN defect in more detail, we performed TEM in all the affected families, and this revealed only subtle abnormalities comprising a few 9+0, 9+3, or 8+1 axonemes (ciliary transposition defects; Figure 4 and Table S5). Most cross-sections appeared unremarkable. These TEM findings also parallel findings obtained in Hydin-deficient cilia of Trypanosoma, where abnormalities of the CP apparatus were reported in only a small proportion of cross-sections. To characterize the defect of the CP apparatus in detail, we performed high-resolution electron microscopy tomography and were able to clearly demonstrate that HYDIN mutant respiratory cilia lack the C2b projection of the CP apparatus (Figure 4 and Movies S1 and S2). Identical observations were reported in Hydin-deficient mice and Hydin-deficient unicellular green Chlamydomonas alga. On the basis of identical findings in three different organisms (Chlamydomonas, mouse, and man), it is very likely that the C2b projection represents the site of HYDIN/Hydin localization at the CP apparatus.

To understand the functional consequences of HYDIN dysfunction, we performed high-speed videomicroscopic analyses of the ciliary beat of respiratory cilia obtained by nasal-brushing biopsy in all three affected siblings. A small proportion of the mutant cilia were immotile. For the mutant cilia with preserved motile ciliary beating, the beat frequencies were apparently within normal ranges. However, detailed analyses of the ciliary beat patterns demonstrated a difference in the ciliary beat amplitude; stiff uncoordinated cilia had a reduced bending capacity. These were unable to move particles and mucus, explaining the defect in airway clearance observed in the affected persons. Interestingly, similar functional defects of the ciliary beat were observed in respiratory and ependymal cilia in Hydin-mutant hy3 mice.

The HYDIN-related motility defect is distinct from that of cilia largely or completely lacking the entire CP apparatus as a result of RSPH4A or RSPH9 mutations. These gene mutations cause a much higher proportion of cilia to display transposition defects (9+0 or 8+1) and to have a predominantly circular motion reminiscent of the CP-less embryonic-node cilia. The HYDIN-mutant cilia were only occasionally observed to show rotatory movement, reflecting the occasional ciliary-transposition defects observed in some cross-sections.

In one of the affected adult male persons (OP-305 II3), ejaculate was available for assessment of sperm-tail (flagella) function. Most sperm tails were immotile, and the majority of remaining sperm flagella only showed twitchy stiff movements or markedly reduced bending amplitude, especially in the proximal part of the flagellum. This provokes an asymmetric bending pattern (Figure S5B and Movies S13 and S14). These findings resemble observations obtained in flagella of Hydin-deficient Chlamydomonas alga. Thus, the function of the CP-apparatus-associated HYDIN/Hydin appears to be evolutionarily conserved from the green Chlamydomonas alga to Trypanosoma, mouse, and man.

Two additional mouse models with CP-apparatus defects have been reported. Mice lacking the CP-apparatus protein Pcdp1 also develop hydrocephalus with normal situs composition and display abnormal respiratory ciliary beating. Like those of Hydin-mutant mice, TEM analyses appeared normal. Only after careful TEM analyses in Chlamydomonas alga deficient for the orthologous protein was the lack of the CP-associated appendage CP1d noted. Therefore, PCDP1 mutations might also cause PCD in humans. In the flagella of PF20-mutant Chlamydomonas alga, absence of the whole CP apparatus is apparent. PF20 is associated with the C2 tubule of the CP apparatus and is probably responsible for CP integrity. Mice homozygous for a knockout of the C-terminal transcript of the human PF20 ortholog (SPAG16L) are infertile as a result of sperm-motility defects but show apparently no other defects, such as hydrocephalus. This is probably explained by the fact that SPAG16L is exclusively expressed in sperm flagella, making this gene an interesting candidate for male infertility.

We previously demonstrated in mice that integrity of the cilial motility of ependymal cells is mandatory for maintaining patency of the aqueduct of Sylvii, which connects the third and fourth brain ventricles. Thus, disruption of ependymal flow regularly causes hydrocephalus in mice. In contrast, human PCD-affected individuals carry...
only an increased risk of developing hydrocephalus. This difference is probably best explained by the much larger brain, brain ventricle, and aqueduct size in humans compared to mice. 48 Therefore, it is not unexpected that all nine PCD-affected individuals possessing recessive HYDIN mutations do not suffer from hydrocephalus. They also do not have any left-right asymmetry defects like situs inversus or situs ambiguous, and this is also consistent with findings observed in hy3 mice. This is best explained by the fact that the motile node monocilia, which are responsible for determination of left-right asymmetry, contain a 9+0 axonemal composition and therefore naturally lack the CP apparatus. 2 Thus, our findings are consistent with the interpretation that the motility of nodal cilia in humans and mice probably does not depend on the function of the CP apparatus. In contrast, ependymal and respiratory cilia, as well as sperm flagella, all contain 9+2 axonemes.

In a recent survey conducted in more than 1,000 individuals affected by PCD in 26 countries throughout Europe, the age at diagnosis and the risk factors for late diagnosis were determined. 24 It was demonstrated that the diagnosis of PCD is often delayed, especially in children without situs inversus. It is currently considered that early diagnosis and appropriate respiratory management have a significantly positive effect on the long-term outcomes and life expectancy of persons with PCD. Delayed diagnosis is readily explained by the lack of availability of specific diagnostic tools for PCD. Thus, the molecular understanding of PCD variants without situs inversus is of great importance for improving PCD diagnostics.

Diagnosing PCD in persons possessing mutations of HYDIN will be a major challenge because these individuals do not have left-right asymmetry abnormalities and because routine TEM reveals predominantly normal findings in most cilia cross-sections. Our findings highlight the important role of nNO measurement as a screening tool and of high-speed videomicroscopy for the diagnostic workup in persons suspected to suffer from PCD.

Supplemental Data

Supplemental Data include five figures, five tables, 14 movies, a description of electron microscopy tomography, and a list of UK10K Consortium members and can be found with this article online at http://www.cell.com/AJHG.

Acknowledgments

We are grateful to the affected persons and their families for their participation in this study. We thank the German patient support group “Kartagener Syndrom und Primäre Ciliäre Dyskinesie e.V.” We thank Angelina Heer, Martina Herting, Denise Nergenau, Carmen Kopp, and Dinu Antony for excellent technical assistance. The UK10K project (http://www.uk10k.org/) is funded by the Wellcome Trust. Contributing investigators of the UK10K project are listed in the Supplemental Data. H.M.M. thanks R. Mark Gardiner and Maggie Meeks for originating the Faroe Island project and Peter J. Scambler and Philip L. Beales for their work on the UK10K project. This work was supported by grants from the Newlife Foundation for Disabled Children and Action Medical Research (to H.M.M.), the Kindness for Kids Foundation, Deutsche Forschungsgemeinschaft (DFG Ot 6/4), GRK 1104, SFB 592, and the Cell Dynamics and Disease graduate program, as well as the European Community’s SYSCILIA project (to H.O.). The manuscript has been seen and approved by all authors.

Received: March 19, 2012
Revised: May 29, 2012
Accepted: August 20, 2012
Published online: September 27, 2012

Web Resources

The URLs for data presented herein are as follows:
1000 Genomes Project, http://www.1000genomes.org
Exome Variants Analysis and Reporting (EVAR), http://www.exome.info
Online Mendelian Inheritance in Man (OMIM), http://www.omim.org

References

Supplemental Data

Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

![Diagram of HYDIN and HYDIN2 cDNA](image)

Figure S1. Schematic of HYDIN and HYDIN2 cDNA

(A) *HYDIN*-specific cDNA amplification strategy to confirm that the *HYDIN* mutation within exon 27 is indeed located on chromosome 16 affecting the *HYDIN* transcript (see primers below) and not on chromosome 1 affecting the *HYDIN2* transcript.

(B) *HYDIN* specific cDNA amplification of exon 8. Due to the fact that the mutation within exon 8 is close to the non-duplicated region, we were able to perform both PCR reactions with a *HYDIN*-specific forward primer. Primer sequences are given in Table S4.
Figure S2. *HYDIN*-Mutant Respiratory Ciliary Axonemes Show Normal Anti-DNAH5 and Anti-DNAL1 Staining

Subcellular localization of outer dynein arm heavy chain DNAH5 and inner dynein arm light chain DNAL1 in control respiratory cells (upper panels) and mutant respiratory cells from individuals OP-305 II1, UCL109II4 and UCL109II1 (lower panels). In control respiratory epithelial cells (upper panels), DNAH5 (green) and DNAL1 (red) localizes to the entire length of the axonemes. In respiratory epithelial cells from affected persons, localization of DNAH5 and DNAL1 was not altered. The yellow co-staining within the ciliary axoneme indicates co-localization of both proteins within respiratory cilia. Nuclei were stained with Hoechst 33342 (blue). Scale bars: 10μm.
Figure S3. HYDIN-Mutant Respiratory Ciliary Axonemes Show Normal Anti-CCDC39 and Anti-GAS11 Staining

Representative TEM images of Faroe Island individuals affected with PCD. Subcellular localization of CCDC39 and the dynein regulatory complex component GAS11 in control respiratory cells (upper panels) and mutant respiratory cells from OP-305 II1, UCL109II4 and UCL109II1 (lower panels). In control respiratory epithelial cells (upper panels), CCDC39 (red) and GAS11 (green) co-localize within the axonemes. In mutant respiratory epithelial cells localization was not altered. Nuclei were stained with Hoechst 33342 (blue). Scale bars: 10μm.
Figure S4. Routine Transmission Electron Microscopy (TEM) of Respiratory Cilia from Faroer Individuals

UCL139II1 showed, in most cross sections, a normal 9+2 axonemal composition (A, B). Rarely, a ciliary transposition defect (8+1 cilia) was identified (C). Routine TEM of UCL109II2, II4 and II1 (D, E, F) revealed in most cross-sections a normal axonemal composure. Only in UCL109II1 were a few 9+3 cilia with additional central tubulus visualized (G).
Representative sequence data for the Faroe Island families is shown for the UCL109 pedigree. The structure of family UCL109 is depicted (top) with black-filled symbols indicating affected children. *HYDIN* exon 8 was amplified using primers HYDINFor (5’-TGA ACT GAT GGG GGT ACA GTG GA-3’) and HYDINRev (5’-GCT CAG ATC GTT CAA ATG AGC AGC-3’). Corresponding sequence chromatograms in this family of *HYDIN* exon 8 amplicons are shown below, indicating the relative levels of the c.922A>T variant that alters the p.Lys307 amino acid residue (AAA) to a stop codon (TAA). The A:T ratio is higher in the parents and unaffected sibling (top three panels) compared to two of the affected siblings (bottom two panels). This is presumed to reflect the presence in chromosome 16 *HYDIN* of a heterozygous A/T genotype in unaffected individuals, compared to a homozygous T/T in affected individuals, combined in all cases with the presence of a co-amplified A/A genotype nucleotide that is present in the chromosome 1 *HYDIN2*.

Figure S5. Identification of Recessive HYDIN Mutations in Faroe Island Family UCL109

[Diagram and sequence data for the UCL109 family showing affected and unaffected individuals with corresponding sequence chromatograms indicating the A:T ratio with respect to the c.922A>T variant]
A filtering process to assess variants for novelty was performed in order to determine the disease-causing variant. Firstly, all identified DNA variants in the siblings were compared in order to exclude those not shared between both. This reduced the total number of shared DNA variants from >100,000 to 54,232, and subsequent filtering against 181 control exomes available through the UK10K project resulted in further reduction to only 447 shared variants, 55 of which were homozygous, and 392 of which were heterozygous in both affected siblings. Due to the rare frequency of PCD we next excluded all variants that had an allele frequency equal to or higher than 0.5% in the 1000 Genomes database, which left 17 homozygous and 328 heterozygous variations shared between the affected individuals.

Table S1. Summary of Whole-exome Filtering Process

<table>
<thead>
<tr>
<th>Filter</th>
<th>Total Variants</th>
<th>Variant Category</th>
<th>Genes Containing Two Mutations</th>
<th>In Cilia Proteome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variants in 109II1</td>
<td>131 068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total variants in 109II3</td>
<td>123 266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total shared variants unfiltered</td>
<td>54 232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total shared changes filtered vs. 181 controls</td>
<td>447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subset of filtered heterozygous variants</td>
<td>392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subset of filtered homozygous variants</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subset of filtered heterozygous variants</td>
<td></td>
<td></td>
<td>ZNF295 (compound heterozygous)</td>
<td></td>
</tr>
<tr>
<td>Heterozygous variants MAF <0.005 of which</td>
<td>328 (of 392)</td>
<td>indel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 3' UTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 5' UTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>171 intronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37 synonymous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 nonsynonymous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td></td>
<td>ZNF295 (compound heterozygous)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 (of 55)</td>
<td>splice site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 stop gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 downstream</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 upstream</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mature mRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 non coding gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 essent splice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td>indel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td>2 3' UTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td>10 intronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td>2 synonymous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td>1 Splice site</td>
<td>DPYSL2 (homozygous)</td>
<td></td>
</tr>
<tr>
<td>Homozygous variants MAF <0.005 of which</td>
<td></td>
<td>stop gain</td>
<td>Hydin (homozygous)</td>
<td></td>
</tr>
</tbody>
</table>

A filtering process to assess variants for novelty was performed in order to determine the disease-causing variant. Firstly, all identified DNA variants in the siblings were compared in order to exclude those not shared between both. This reduced the total number of shared DNA variants from >100,000 to 54,232, and subsequent filtering against 181 control exomes available through the UK10K project resulted in further reduction to only 447 shared variants, 55 of which were homozygous, and 392 of which were heterozygous in both affected siblings. Due to the rare frequency of PCD we next excluded all variants that had an allele frequency equal to or higher than 0.5% in the 1000 Genomes database, which left 17 homozygous and 328 heterozygous variations shared between the affected individuals.
Table S2. Summary of Whole-Exome Sequencing

<table>
<thead>
<tr>
<th>Sample</th>
<th>UCL109III1</th>
<th>UCL109II2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read length</td>
<td>76 bp</td>
<td>76 bp</td>
</tr>
<tr>
<td>Total Bases</td>
<td>6.60 Gb</td>
<td>6.67 Gb</td>
</tr>
<tr>
<td>Total Reads</td>
<td>86,810,282</td>
<td>87,800,624</td>
</tr>
<tr>
<td>Reads mapped</td>
<td>84,819,662 (97.7%)</td>
<td>86,676,966 (98.7%)</td>
</tr>
<tr>
<td>% Target bases ≥ 5×</td>
<td>91.6%</td>
<td>91.3%</td>
</tr>
<tr>
<td>% Target bases ≥ 10×</td>
<td>86.5%</td>
<td>86.1%</td>
</tr>
<tr>
<td>% Target bases ≥ 20×</td>
<td>77.6%</td>
<td>77%</td>
</tr>
<tr>
<td>% Target bases ≥ 50×</td>
<td>54.2%</td>
<td>53.1%</td>
</tr>
<tr>
<td>Duplication rate</td>
<td>4.80%</td>
<td>4.44%</td>
</tr>
</tbody>
</table>

Of 462 total variants shared between the two affected siblings from UCL109 after filtering against 181 control exomes available via the UK10K project, 23 homozygous and 363 heterozygous variants had a minor allele frequency of less than 5% in the 1000 Genomes Project database. We further investigated only variations that cause nonsynonymous and stop gain changes in protein-coding regions and those that fell within two bases of exon boundaries that could interfere with intron splicing. Furthermore, we only investigated heterozygous changes where there were two variants in the same gene representing a compound heterozygous variant. After further filtering, only two genes (ZNF295 and FAM53A) had two heterozygous variants, and neither gene was present in the cilia proteome or was annotated for any cilia-related functions. Three genes had homozygous variants but two (DPYSL2 and KIAA0125) were absent from the cilia proteome and were not annotated for any cilia-related functions. The third gene, HYDIN, contained the shared homozygous stop gain variant c.922A>T.
Table S3. Allele-Specific Primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5´ – 3´)</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1HYD2F</td>
<td>CCAAGCATAATATTTGTTTTCTGATCATATCTC</td>
<td>HYDIN2</td>
</tr>
<tr>
<td>Ch1HYD2R</td>
<td>GAGTTGGCTAAAAATGTAGTACAAAAATTCCTG</td>
<td>HYDIN2</td>
</tr>
<tr>
<td>Ch16HYDF</td>
<td>CCAAGCATAATATTTGTTTTCTGATCATATCTT</td>
<td>HYDIN</td>
</tr>
<tr>
<td>Ch16HYDR</td>
<td>GAGTTGGCTAAAAATGTAGTACAAAAATTCACTA</td>
<td>HYDIN</td>
</tr>
</tbody>
</table>

The PCR primers were designed manually to amplify exon 8 of HYDIN2 on Chr. 1 and HYDIN on Chr. 16.

Table S4. cDNA Primers

<table>
<thead>
<tr>
<th>Description</th>
<th>Primer</th>
<th>Sequence (5´ – 3´)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First strand</td>
<td>Hyd_cDNA_29/30_R</td>
<td>TCATTTGCTGTGAGGTTCCTGG</td>
</tr>
<tr>
<td>1st PCR</td>
<td>Hyd_cDNA_5_F</td>
<td>AGTGCCTTCCATATTCCGAATCC</td>
</tr>
<tr>
<td></td>
<td>Hyd_cDNA_29_R</td>
<td>TCCAGTGTTGGCGATCTGTATC</td>
</tr>
<tr>
<td>2nd PCR</td>
<td>Hyd_cDNA_24_F2</td>
<td>ACAGTAGAGTCCCCCGAGATGG</td>
</tr>
<tr>
<td></td>
<td>Hyd_cDNA_28/29_R</td>
<td>GATAAAGCCAGACACAGGCAGG</td>
</tr>
<tr>
<td>Strategy B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First strand</td>
<td>Hyd_cDNA_14/15_R</td>
<td>CACCCTGATAGCAGCAAATCC</td>
</tr>
<tr>
<td>1st PCR</td>
<td>Hyd_cDNA_4/5_F</td>
<td>TGACAAAAATTTCAAGGTTGTG</td>
</tr>
<tr>
<td></td>
<td>Hyd_cDNA_11_R</td>
<td>AATCTTAGGCTCCATGCTTC</td>
</tr>
<tr>
<td>2nd PCR</td>
<td>Hyd_cDNA_5_F</td>
<td>AGTGCCTTCCATATTCCGAATCC</td>
</tr>
<tr>
<td></td>
<td>Hyd_cDNA_9_R</td>
<td>CAGGGGCTCACCAGTGAAAAC</td>
</tr>
</tbody>
</table>

The PCR primers were used to amplify HYDIN cDNA.
Table S5. Summary of Ciliary Cross-Sections Examined

<table>
<thead>
<tr>
<th></th>
<th>OP-305 II1</th>
<th>OP-305 II2</th>
<th>UCL109II 1</th>
<th>UCL109 II3</th>
<th>UCL109 II4</th>
<th>Control (510 Persons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal 9+2</td>
<td>76.2%</td>
<td>38.5%</td>
<td>76.1%</td>
<td>91%</td>
<td>96%</td>
<td>91+/−8</td>
</tr>
<tr>
<td>(n = 250)</td>
<td></td>
<td>(n = 5)</td>
<td>(n = 249)</td>
<td>(n = 30)</td>
<td>(n = 25)</td>
<td></td>
</tr>
<tr>
<td>Disarranged Microtubules (7+2, 8+2, 8+0)</td>
<td>5.5%</td>
<td>23% (n = 3)</td>
<td>8% (n = 26)</td>
<td>3% (n = 1)</td>
<td>4% (n = 1)</td>
<td>2+/−2</td>
</tr>
<tr>
<td>Extra microtubule (9+3)</td>
<td>1.8%</td>
<td>0%</td>
<td>3.4%</td>
<td>3% (n = 1)</td>
<td>0%</td>
<td>1+/−2</td>
</tr>
<tr>
<td>(n = 6)</td>
<td></td>
<td></td>
<td>(n = 11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single microtubular doublet</td>
<td>0.3%</td>
<td>0%</td>
<td>0.3%</td>
<td>0%</td>
<td>0%</td>
<td>>1+/−1</td>
</tr>
<tr>
<td>(n = 1)</td>
<td></td>
<td></td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transposition of central pair (8+1)</td>
<td>1.8%</td>
<td>7.7% (n = 1)</td>
<td>0.3% (n = 1)</td>
<td>0%</td>
<td>0%</td>
<td>>1+/−1</td>
</tr>
<tr>
<td>(n = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One of pair missing (9+1)</td>
<td>4.0%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>1+/−6</td>
</tr>
<tr>
<td>(n = 13)</td>
<td></td>
<td></td>
<td>(n = 10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central pair missing (9+0)</td>
<td>10.1%</td>
<td>30.8%</td>
<td>8%</td>
<td>3% (n = 1)</td>
<td>0%</td>
<td>2+/−3</td>
</tr>
<tr>
<td>(n = 33)</td>
<td></td>
<td>(n = 4)</td>
<td>(n = 26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound cilium</td>
<td>0.3%</td>
<td>0%</td>
<td>0.9%</td>
<td>0%</td>
<td>0%</td>
<td>1+/−1</td>
</tr>
<tr>
<td>(n = 1)</td>
<td></td>
<td></td>
<td>(n = 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total amount of probes</td>
<td>n = 328</td>
<td>n = 13</td>
<td>n = 327</td>
<td>n = 33</td>
<td>n = 26</td>
<td>approx 153,000</td>
</tr>
</tbody>
</table>

Electron Microscopy Tomography

Images were recorded at ×27,500 magnifications on a Teitz CCD camera with a 4096 by 4096 pixel resolution (0.441 and 0.321 pixels/nm respectively). The defocus was configured so that the first minimum in the Fourier transform fell at 1/5 nm. For image processing the dual-axis tilts series were aligned and back-projected to generate tomograms using IMOD. Central pairs were selected for sub-tomographic averaging. Using PEET, part of the IMOD package the regions selected were extracted, and compared using a rotational and translational search before combining to generate average densities. The data was rendered and visualised using UCSF Chimera. The tomograms contained multiple cilia, thus averaging was performed using six cross sections for each average.
UK10K RARE Consortium Members (http://www.uk10k.org/)

Saeed Al-Turki, Carl Anderson, Dinu Antony, Inês Barroso, Phil Beales, Jamie Bentham, Stefano Bertolini, Shoumo Bhattacharya, Sebastiano Calandra, Keren Carss, Krishna Chatterjee, Sebhattin Cirak, Catherine Cosgrove, Allan Daly, Petr Danecek, Richard Durbin, David Fitzpatrick, Jamie Floyd, Reghan Foley, Chris Franklin, Marta Futema, Colin Graham, Steve Humphries, Matt Hurles, Chris Joyce, Eran Leitersdorf, Shane McCarthy, Hannah M. Mitchison, Dawn Muddyman, Francesco Muntoni, Andrew Neil, Stephen O'Rahilly, Alexandros Onoufriadis, Victoria Parker, Felicity Payne, Vincent Plagnol, Lucy Raymond, David B. Savage, Peter Scambler, Miriam Schmidts, Nadia Schoenmakers, Mary Seed, Robert Semple, Eva Serra, Jim Stalker, Frank Van Bockxmeer, Margriet van Kogelenberg, Parthiban Vijayarangakannan, Klaudia Walter, Ros Whittall, and Kathy Williamson

1Molecular Medicine Unit, UCL Institute of Child Health, London, WC1N 1EH, UK
2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1HH, Cambridge, UK
3The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
4MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, EH4 2XU, UK
5University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
6Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital, London, WC1N 3JH, UK
7BHF Laboratories, University College London, The Rayne Building, 5 University Street, London, WC1E 6JY, UK
8Dept. of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, CB2 2XY, UK
9Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
10University College London (UCL), Genetics Institute (UGI), Gower Street, London, WC1E 6BT, UK
11Center for Research, Prevention and Treatment of Atherosclerosis, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
12Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via campi 287, I-41125 Modena/Italy
13Department of Cardiology, Imperial College Health Services, Charing Cross Hospital, London
14Department of Internal Medicine, University of Genoa, Italy
15Cardiovascular Genetics Laboratory Dept Biochemistry, Division of Laboratory Medicine, Level 2, North Block, Royal Perth Hospital, Wellington St, Perth
16NIHR School of Primary Care Research, Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
17Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital, Belfast BT9 7AB, Northern Ireland